AD-A285 051 - y

U ARRRIR o O
AEOSRTR: 9 4 0541 L

FINAL TECHNICAL REPORT TO

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

by

Jeffery L. Kennington
Department of Computer Science and Engineering
Southern Methodist University

Dallas, Texas 75275-0122

jlk@seas.smu.edu _ DTIC
(214)—-768—3278 E b

for

INTEGER NETWORKS WITH SIDE CONSTRAINTS:
ALGORITHMS AND APPLICATIONS

This docarasnl BQ3 Lol 8-)
for public ::is.5: znd cale US |

18 August 1994 | distmowon iz ot

F49620-93-1-0091

SMU # 5-25154

4-31466
&\llulllm\lll\\\|1\\h\l\l\ll\l\ll\\\lll\

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Unrestricted

fr

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSRTR. 94 (=2 7

6b. OFFICE SYMBOL
(If applicable)
cF

6a. NAME OF PERFORMING ORGANIZATION
SMU

7a. NAME OF MONITORING ORGANIZATION
AFOSR/NM

6c. ADDRESS (City, State, and ZIP Code)
Dallas, TX 75275~0122

7b. ADORESS (City, State, and Z1P Code)

110 Duncan Ave, Suite 100
Bolling AFB, DC 20332-0001

8b. OFFICE SYMBOL
(If applicable)
M

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION
AFOSR

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F49620-93~1~0091

8¢. ADORESS (City, State, and ZIP Code)
110 Duncan Ave, Suite 100
Bolling AFB, DC 20332-0001

10. SOURCE OF FUNDING NUMBERS

WORK UNIT
ACCEZSSION NO.

TASK
NO.
DS

PROGRAM PROJECT
ELEMENT NO. NO.

2304

11, TITLE (Include Security Classification)
Integer Networks

12. PERSONAL AUTHOR(S)
Jefferv L. Kennington

13b. TIME COVERED
oM 1/1/93 -030/5/94

e ————

13a. TYPE OF REPORT
Final

14. DATE OF REPQORT (Year, Month, Day) {15. PACE CQUNT

94 Aug 18

16 SUPPLEMENTARY NOTATION

COSATI CODES

FIELD GROUP | SUB-GROUP

18. SUBJECT TERMS (Continue on reverse If necessary and identify by biock number)

networks, integer programming, ontimization

'9. ABSTRACT (Continue on reverse if necessary and identify by block number)

Many of the routing and scheduling problems which arise at the Air
Mobility Command can be modelled as constrained integer networks. The
network part is associated with the routing and distribution network flown
by the the Command and the side constraints arise when that aircraft
capacity must be shared by different commodities or some type of budget
restriction must be enforced. The work presented here reports on the
progress in solving this type of mathematical program.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
QuncuassipieounumiTen [saMe as ’PT.] OTIC USERS
22a. NAME OF RESPONSIBLE INDIVIDUAL . 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
Jeffery L. Kennington 214/768-3278 SEAS

00 FORM 1473, 8a MAR

83 APR edition may be used until exhausted.

SECURITY CLASSIFICATION OF THIS SAGE

All other editions are cbsolete.

Unclassified

—_

Table of Contents
I. Statement of Work 1
II. Branch—and—Bound Algorithm 2
II1. Recovery from Numerical Instability 3

Appendix A. A Branch—and—Bound Algorithm for the Constrained
Assignment Problem A-1

Appendix B. Recovery from Numerical Instability
During Basis Reinversion B-1

Distribution List C-1

Accesion For

NTIS CRA&I

) =S

DTIC TAB

U neomiced £
Jootteston
D :tibutionf

availability Coues
i Avan anafor
Dist Special

a4l |

o e e e et

I. Statement of Work

The Air Mobility Command at Scott Air Force Base has a group of operations research
analysts who develop and run mathematical programming models for the Command.
Two of their most famous models are the Patient Evacuation Model and the LOGAIR
Model. The problem generator for the Patient Evacuation Model has been placed in
the public domain and all of the major mathematical programming software groups
have tested their software on these models.

Both of these Air Force models involve a large network with additional side
constraints. For one model the side constraints describe the capacity of an aircraft
which is shared by patients having different injury types. A burn victim may be destined
for the burn center in San Antonio where as a soldier with a head injury may be enroute
to the Mayo Clinic. For the other model, the side constraints enforce aircraft capacity
for cargo sharing the same aircraft but having different origins. That is, cargo that
originated at Tinker AFB and cargo that originated at Wright—Patterson AFB may end
up on the same aircraft enroute to England, but this cargo must maintain its own
identity while on this aircraft so that it will arrive at the proper destination. This is
handled by separate networks for each origin node which are linked by mutual capacity
constraints. In addition, the clients frequently need integer answers.

CPLEX 3.0 has excellent capabilities, but there are many problems in this class that
cause great difficulty for even CPLEX. The author recently ran one of these models for
over 10 hours of cpu time on a Dec 5000/260 without obtaining a confirmed optimal
solution. It appears, at present, that the only hope for developing robust software for
some of these models is to exploit the underlying network structure.

There are two manuscripts presented in this final report. The first concerns a special
algorithm and software implementation for the constrained assignment problem. The
second fills in a gap in the literature regarding pivot agenda algorithms when the input
matrix is singular. Both of these papers are steps in our long term quest to solve the
integer constrained network problem.

II. A Branch—and—Bound Algorithm

The constrained assignment problem is to determine a least cost assignment of m men
to n jobs such that an additional set of linear constraints is satisfied. This model is a
special case of the integer network model with side constraints which in turn is a special
case of the binary linear program. This problem is a member of the class NP—Hard and
it is well-known that practical problems in this class are intractable. Air Force
problems related to the assignment of pilots to schedules and the assignment of aircraft
tail numbers to routes can be modelled as constrained assignment problems.

The constraint matrix for the pure network problem without the side constraints has
this wonderful property of being totally unimodular. Hence, every basis has
determinate equal +1 or —1, every basis is triangular, and every extreme point has
integer components. This problem is a member of the class P and is relatively easy to
solve. By appending only a single side constraint, the unimodularity property is lost,
bases are not triangular, extreme points may not be integer, and the problem is a
member of the class NP—Hard. Unfortunately, almost all real —world problems have
one or more side constraints. For Air Force models, itis common to have some type of
aircraft capacity or budget constraint.

The objective of this study was to develop and empirically evaluate a new algorithm for
this model. The algorithm relies on the branch—and—bound strategy and is designed
for problems having a large network and a limited number of side—constraints. It
exploits an algorithm that we developed earlier for the assignment problem having a
single side constraint. This work uses an excellent assignment code that our research
team developed and handles the side constraint via the use of Lagrangean relaxation.

The paper resulting from this study appears in Appendix A of this report. It has been
submitted for publication and is currently under review.

III. Recovery from Numerical Instability

In my opinion, the best technique available for solving constrained networks is to use a
simplex based algorithm in which the basis is partitioned into two parts, one part
associated with the network constraints, and one part associated with the side
constraints. The component associated with the network part can be maintained as a
rooted spanning tree and all operations involving the inverse of this component can be
executed using specialized labeling algorithms. Another component, corresponding to
the side constraints is called the working basis. It is the inverse of this working matrix
which is needed for the operations required by the simplex method.

In our system, the inverse of this working basis is maintained in factored form and every
pivot involves the addition of either one or two new factors to the eta file. Periodically,
say every 50 to 100 pivots, the working basis is reinverted and a new eta file is developed.
The new eta file is smaller than the old one and much of the round —off error which has
been introduced during the previous pivots will have been eliminated.

The first step in the procedure to obtain a new factorization is to determine a
permutation of the rows and columns so that the sparsity property of this matrix will be
maintained in the factorization of its inverse. In the literature, the permutation of the
basis is known as the pivot agenda and there are several algorithms for obtaining a good
pivot agenda. All pivot agenda algorithms assume that the input matrix is nonsingu'ar.

In our work with specialized partitioning methods for networks with side constraints,
we discovered that due to the nature of the side constraints a singular input matrix
would eventually be presented to the pivot agenda algorithm. When this occurs, all of
the pivot agenda algorithms, of which we are aware, fail. The objective of our
investigation was to present recovery procedures, using a variation of the
Hellerman —Rarick P3 algorithm, for the case in which the input matrix is singular. The
results of our investigation are presented in Appendix B of this document which has
been submitted for publication and is currently under review.

Technical Report 93-CSE-49

A BRANCH-AND-BOUND ALGORITHM FOR THE
CONSTRAINED ASSIGNMENT PROBLEM

Jeffery L. Kennington
(214)768-3278 jlik@seas.smu.edu
Farin Mohammadi
(214)768-1476 fam@seas.smu.edu

Department of Computer Science and Engineering
School of Engineering and Applied Science
Southern Methodist University
Dallas, Texas 75275-0122

November 1993

Comments and criticisms from interested readers are cordially invited.

ABSTRACT

This manuscript presents a branch-and-bound algorithm to obtain a near
optimal solution for the constrained assignment problem in which there are only a
few side constraints. At each node of the branch-and-bound tree a lower bound is
obtained by solving a singly constrained assignment problem. If needed, Lagran-
gean relaxation theory is applied in an attempt to improve this lower bound. A
specialized branching rule is developed which exploits the requirement that every
man be assigned to some job. A software implementation of the algorithm has
been tested on problems with five side constraints and up to 75,000 binary vari-
ables. Solutions guaranteed to be within 10% of an optimum were obtained for
these 75,000 variable problems in from two to twenty minutes of CPU time on a
Dec Alpha workstation. We believe that this is the current best algorithm and
software implementation for the constrained assignment problem having a limited
number of side constraints. The behavior of the branch-and-bound algorithm for
various problem characteristics was also studied. This included the tightness of the
side constraints, the stopping criteria, and the effect when the problems are unbal-

anced having more jobs than men.

ACKNOWLEDGMENT
This research was supported in part by the Air Force Office of Scientific Research
under Contract Number AFOSR F49620-93-1-0091, and the Office of Naval Re-
search under Contract Number N00014-91-J-1234.

I. INTRODUCTION
The constrained assignment problem is to determine a least cost assignment

of m men to n jobs such that an additional set of constraints is satisfied. This

model is a binary linear program and may be stated mathematically as follows:

minimize Z CijXij (1)
.j) eaA

subject to > xj = 1,i=1..,m (2)
j: (L)) €A

Z Xij < 1, j=1,...,l’1 (3)
i (,j) EA

xi € (0,1}, all (i,j) e A (4)

> dixy o= r*, k=1,..,s (3)
Gi.j)EeaAa

where X; =1 implies that man i is assigned to job j at cost of c;;, df denotes the

coefficient of X;jin the kth side constraint, r* denotes the right-hand-side for the
kth side constraint, and A is the set corresponding to the feasible assignments.
Note that the problem allows for more jobs than men. Many practical problems
have this feature. It also allows for the case in which the number of men exceeds

the number of jobs. For this case, one simply reverses the definition of men and

jobs.

Since (1)-(S) is a binary linear program, all the literature on integer pro-
gramming applies (see Geoffrion and Marsten [5], Salkin [12], Parker and Rardin
[11], Nemhauser and Wolsey [10]). In practice most integer programming models
are either solved as a linear program and the solutions are rounded using some
heuristic or branch-and-bound is used in an attempt to obtain a solution within a
prespecified tolerance.

A special case in which the side constraints have the generalized upper bound
(GUB) structure has been studied by Ali, Kennington, and Liang {2]. A relaxation/
decomposition procedure that involves solving a series of pure assignment prob-
lems is used successfully. Ball, Derigs, Hilbrand, and Metz (3] also present an
algorithm for the matching problem with generalized upper bound side constraints.

Another special case for s=1 and m=n has been studied by Gupta and Sharma
(6], Aggarwal (1], Mazzola and Neebe (9], Bryson (4], Kennington and Moham-
madi [7,8]. The only specialized algorithm for (1)-(5) is the two phase procedure
of Mazzola and Neebe [9]. The first phase uses subgradient optimization to obtain
an advanced start for the branch-and-bound method used in the second phase.

The objective of this study was to develop a new branch-and-bound algo-
rithm to solve the constrained assignment problem and to provide an empirical
analysis of this algorithm on a variety of assignment problems having only a few
side constraints. All empirical analysis was performed on problems having five

side constraints.

1. THE BRANCH-AND-BOUND ALGORITHM

The branch-and-bound method can be viewed as a divide and conquer strat-
egy. 'f a problem cannot be solved, then it is partitioned into several smaller prob-
lems. The best of the solutions to the smaller problems will be the solution to the
original problem.

Consider the problem P(S) = min{ cx: x € S}. Using the terminology of Geof-
frion and Marsten [4] let v[P(S)] denote the optimal objective function value for
the problem P(S). Let x* denote an incumbent for P(S) with objective value of V"
Let P(S) denote a relaxation of P(S) and let CL denote the candidate list. The
generic branch-and-bound algorithm may be stated as follows:

Input:
1. The probiem, P(S).
Output:
1. The solution vector, Xx'.
2. The objective value corresponding to x°, v".(V' = oo implies that S = ®.)
Procedure BAB;
Begin
initialize:
CL:= {P(S)}, V'i= oo;
while CL = ¢ do

comment: select a candidate problem for analysis.

select P(U) € CL, CL:= CL \ {P(U)};

if P(U) has a feasible solution, then

if v[P(U)] < v*, then
let X be an optimum for P (U);
if X € S, then
X=X, V= ¢cX;
else
apply a heuristic to X in an attempt to create X such that X € S and
cX < V5
if successtul, then Xi= X, vi:= ¢X;
comment: branching
create U,, U,, ..., U, such that U,uU,y ...uU, = U and U N, = ¢
for all 1=j € {1, 2, ..., p};
CL:= CLU{P(Uy), P(Uy), ..., P(U,)};
end if
end if
end if
end while

end.

. AN EXACT ALGORITHM FOR THE CONSTRAINED
ASSIGNMENT PROBLEM

In this section we present a specialized branch-and-bound algorithm for the
constrained assignment problem. The constrained assignment problem is a binary
problem therefore at each node of the branch-and-bound tree either an assign-
ment is prohibited by fixing the corresponding variable to zero or a man is perma-

nently assigned to a job by fixing the corresponding variable to one.

3.1 The Relaxation

Let D denote the matrix corresponding to the coefficients in (5), x denote the
vector corresponding to the binary decision variables, ¢ denote the vector of costs,
and r denote the vector of right-hand-side values for the side constraints. Then the
constrained assignment problem may be denoted as P(S) where S = {x: (2), (3),
(4), (5)}. Let 1 denote a vector of 1's and S = {x: (2), (3), (4), 1Dx < 1r}. Then
P(S) is a valid relaxation for P(S). Application of the algorithm in [7] to solve the
singly constrained assignment problem will yeild a lower bound for P(S), the opti-
mal Lagrangean multiplier corresponding to the constraint 1Dx < 1r, and X € S. If
X € S, then ¢X is an upper bound for P(S).

Let S = {x: (2), (3), (4)}. Recall that a Lagrangean dual for P(S) is the
problem max {L(a) :a > 0} where L(a) = min {cx+a (Dx-r): X € S }. We use the
optimal Lagrangean multiplier and X from the singly constrained algorithm to
form an advanced starting value for a. Let y denote the solution for L(a). Then
z = Dy-r is used to modify a for successive steps. A limited number of these steps

will be performed in this algorithm.

3.2 The Branching Rule
Consider any node in the branch-and-bound tree. If the relaxation, P(S) has
no feasible solution, then this node may be fathomed. Otherwise, an assignment

will be used to create the branches as illustrated in Figure 1.

Figure 1 nere

For a given node in the branch-and-bound tree let F'= {(i,j): Xj; = 1} and F’=
{(Lj): =0} LetU={x € S: x; = 1 for all (i,j) € F* and x = 0 for all (i,j) € F}.
The relaxation solved at each node in the branch-and-bound tree is P(U) which is
a singly constrained assignment problem with some assignments fixéd. Letx €T,
T={Gj): %=1, (i,j) g F'}, and t=|T|. Consider the t+1 subsets of U (U,, U,,
...,U..,) created in the following manner:

0, (injy) € Th Ty = TM(ndn)):
2= {xeU: xy =1, X, =0, (2j2) € Ty}, Tz = T\{(iz,j2)}

cl

1={XEU: xi]jl

cl

= {xeU: Xijy = 1, Xigi, = 1, Xiy= 0, (iajo) € T}, Ts = T\ {(is.ja) s

e

U ={xeU: xy =1, .., Xij, =L Xig =0, (i) € Ti};

-—

U. ={xeU: x;=1forall (i,j) e T} . Note that, U = U,uU,u ... uU,,, and

UnU,= ® for alt i = j.

Consider a node in the branch-and-bound tree having f, edges fixed at 1.
Then branching from this node will produce t+1 = n-f,+1 new candidate problems.
From Figure 1 it can be seen that the last node (i.e., U,,,) need not be created

since it was examined at the parent node. Therefore, each branching produces t

candidate problems.

3.3 The Candidate List

For our implementation of the branch-and-bound algorithm, ASSIGN+1 [7]
will be applied to P(U;) and the results placed in the candidate list (i.e., a problem
is solved before it is placed in the candidate list). The motivation for placing solved
problem in the candidate list is that the solution for P(U,) can be easily modified to
obtain an advanced starting solution for P(U,,;). Therefore solving the sequence of
problems P(T,), P(T,), ..., P(U,) should require only a moderate amount of com-
putational effort. Hence, each entry in the CL consists of the five tuple (F°, F; X,
B, u) where X € U,, B < v[P(T,)], and u the optimal Lagrangean dual for the

éingly constrained problem.

3.4 The Fathoming Rules
At any node p of the branch-and-bound tree let U, F!, and F° be as defined

in Section 3.2. LetM = {1, 2, 3,..., m}\ {i: (i,j) € F}}, then the following rules may

be used to fathom a node. If
> df+ > min(df : (i,)) € ANF) > 1
(i.j) € F! i€EM
for any k, then node p can be fathomed. That is, no selection of the free variables

will satisfy the kth side constraint. If

> cy+ D, min(ey ¢ (i,) EANF) >V

(i, j) € F! iEM
then node p can be fathomed. That is, no selection of the free variables will result

in a solution superior to the incumbent.
If min {(]1Dx: x € U} > 1r, then node p can be fathomed. That is, no selection

of the free variables will satisfy all side constraints simultaneously. Let § be the

best lower bound obtained for node p and € be the termination tolerance. We will
fathom node p if v' -8 < ef. Using this rule with € = 0.1 results in a solution from
the branch-and-bound procedure guaranteed to be within 10% of the optimum and

€ = 0.01 produces a solution within 1% of an optimum.

3.5 The Algorithm

In this section we combine the information presented in Sections 3.1-3.4 to
construct the ASSIGN+s algorithm.
Input:
1. The cost vector, c.
2. The feasible region S.
3. The set of (man, job) pairs corresponding to eligible assignments, A.
4. Termination tolerance. e.
5. The maximum execution time, tmax.
6. The maximum number of Lagrangean relaxations to be solved at each node,
limit.
Output:
1. The solution vector, X'.
2. The objective value corresponding to X', v". (V' = oo implies that the problem is
infeasible.)
Procedure ASSIGN+s;
Begin
initialize:
comment: Node 1 in the Branch-and-Bound tree.

Vi= 0o, F':= ®, Fl:= ¢

A-10

ASSIGNP1(P(S), X, B, u);

if = -co then terminate;

if Xe S then X":= X, V:=cX;

else LAGRANGE(X , 8, u);

comment: Tolerance test for fathoming.

if v' - B < €f then terminate;

CL:= {(F°,F, %, 8, wh

while CL = ® do
SELECT A PROBLEM(F°,F!, X, 8, u);
BRANCH(CL, F°,F, X, B, u);

end while

end.

procedure ASSIGNP1(P(U), X, £, u);

Begin
initialize:
B = -~;

apply the ASSIGN+1 algorithm (Kennington, Mohammadi [1991]) to P(O);
if P(U) has a feasible solution then

let X be the best feasible solution found for P(U);

let B be the best lower bound found for P(U);

let u be the optimal Lagrangean dual for the singly constrained problem;
end if

end.

A-11

procedure SELECT A PROBLEM (F°,F!, X, 8, u);
Begin
select (F°,F!, X, 8, u) e CL, CL:= CL \ (F*,F, X, 8, u);
end.
procedure BRANCH(CL, F°,F!, X, B, u);
Begin
initialize:
t=0, Gi= (@) %=1, (i) & F'h
M:= {1, 2, 3, ..., m\ {i: (i,j) € F'};
while G =& do
comment: Fix a variable at zero.
let (is,j)) € G, Gi= G\ {(injn}, F:= F* U {(vj0)}s
ASSIGNP1(P(U), X, B8, u);
if § = ~oo then
if X e S and cX < v’ then x":= X, V:= ¢
else LAGRANGE(X, £, u);
comment: Tolerance test for fathoming.
if v - B > ¢f then CL:= CL u {(F°,F', X, 8, u)};
comment: Permanently assign man i, to job j,.
M= M\ {ir}, F:= B' U {(in,j)};
Fo:= FOy {(iy,j) : (in)) e Aforallj} u{ (i,j,) : (1,j:) € A for all i }\ {(i1,j.)};
comment: Assignment polytope feasibility tests.

if > ¢+ D min(c;: (i,j) € A) > v’ then return;
(i,j) € F! ieM

A-12

for k=1,...,s

if > df+ > min(dk: (i,j) € A)>r¥ then return;

(Gi.j) € F! i€EM
end for
end if
end while
end.
Procedure LAGRANGE(X, 8, u);
Begin
initialize:
a:=ul, yi=X, t:=1;
while (v*-f > €8 and t < limit) do
z:= Dy-r;
for i=1,...,s
if zx > 0, then ax= 1.;?.Sak;
if z¢ < 0, then a;:= 0.75ay;

end for

let y be a solution for L(a) and §:= max{8, v[L(a)}};

if y € S and cy< v’ then X":= y, V= cy;
t= t+1;
end while

end.

A-13

This branch-and-bound algorithm exploits the structure of the model (1)-(5)
in several ways. Permanent assignment of a man to a job implies that all other
variables involving this man and job may be fixed at zero. The relaxation was a
singly constrained assignment problem for which near optimal integer solutions
can be obtained using the results in Kennington and Mohammadi [8]. Special fath-

oming rules were developed which were based upon the assignment polytope.

A-14

IV. EMPIRICAL ANALYSIS
The algorithm ASSIGN+s has been implemented in software and empirically
analyzed on an Alpha workstation by Digital Equipment Corporation. The code is
written in Fortran and uses ASSIGN+1 (see Kennington and Mohammadi [7]) to
solve the singly constrained assignment problems. ASSIGN+1 is an implementation
of the Lagrangean relaxation algorithm for sparse singly constrained assignment

problems.

We developed a test problem generator with the following inputs: (i) the

number of men, (ii) number of jobs for each man, (iii) the maximum cost, , (iv)
the number of side constraints, s, and (v) the side constraint multiplier, k. Both the

costs and the side constraint coefficients are uniformly distributed over the range
[0, T). We randomly generate a feasible assignment, X and set the right-hand-

side of the side constraints, r, to kDX. Obviously, as k becomes smaller, the feasi-
ble region becomes smaller and for sufficiently small k {x: (2), (3), (4), and (5)} is
usually empty.

The generator was used to generate two sets of 400x400 problems described
in Table 1. As Table 1 indicates, the problems generally become more difficuit as
k becomes smaller and for k small enough the feasible region is empty. For all
runs, the stopping criteria used is €=10% and the % deviation reported in column 8
gives a guarantee on the deviation from optimality. All times are the CPU time and
exclude the time for both input and output. The run with problem number 2 having
k=0.4 was terminated after the candidate list grew to 25,000 entries. As we ex-
pected, there exists problems which cannot be solved in a reasonable amount of

time and storage using this approach. Tightly constrained problems having 48,000

A-15

binary variables definitely stretches the capability of this software implementation
of our branch-and-bound algorithm.

Table 1 here

Tables 2 and 3 give our empirical results with 30 randomly generated assign-
ment problems with various sizes all having five side constraints. For all of the
problems tested we were able to find a solution guaranteed to be within 10% of an
optimal solution. The six smallest problems have 3,000 binary variables. Five of
these were solved in less than two minutes each and one required about six and
one-half minutes. The six largest problems had 75,000 binary variables and were
all solved in less than twenty one minutes each. The most difficult problems
(300x300) have 27,000 binary variables. Two of these six problems required eighty
minutes to solve. These two difficult problems also had very tight side constraints.

Tables 2 and 3 here

This work was motivated by models for assigning sailors to ships and for this
application the number of jobs always exceeds the number of sailors available.
Frequently the job list covers a longer period than the list of available sailors which
produces a large imbalance in n and m. Tables 4 and 5 present our empirical
results from solving 18 unbalanced assignment problems with five side constraints.
For the 300x600 problem with k=0.6 presented in Table S, the run was terminated
due to candidate size limit. For all other test problems we were able to obtain a
solution within 10% of an optimum.

Tables 4 and 5 here

For all test problems we search for a solution within 10% of an optima. To

study the effect of the tolerance value on the performance of the algorithm we

A~16

®
o . .
solved two 200x200 and two 200x400 problems with different tolerance values.
Figure 2 indicates that, as expected, a decrease in the tolerance value leads to an
increase in the execution time. For all four problems, a point was reached in which
o
a slight decrease in the tolerance resulted in a large increase in the solution time.
Figure 2 here
[]

A-17

V. SUMMARY AND CONCLUSIONS

We have presented a branch-and-bound algorithm for the constrained as-
signment problem. The algorithm is applicable for both balanced and unbalanced
assignment problems having inequality side constraints. The algorithm uses a spe-
cialized branching rule that exploits the underlying structure of the problem.
Bounds are obtained by solving a singly constrained assignment problem followed
by a few iterations with a Lagrangean relaxation.

We presented empirical results for both balanced and unbalanced problems
having five side constraints. For problems having 75,000 binary variables, solu-
tions guaranteed to be within 10% of an optima were obtained in less than twenty
one minutes on a Dec Alpha workstation. Our analysis indicated that as the side
constraints become tighter the execution time and number of branch-~and-bound
nodes increases. For one of the 300x300 problems having 27,000 arcs, the execu-
tion time increased from about one minute to about eighty minutes as a result of
side constraint tightening. Our analysis also indicates that the performance of the
algorithm on unbalanced problems is generally better than its performance for the
balanced problems with the same number of binary variables. The Navy personnel
assignment problems which motivated this study are ail unbalanced models.

For problems of this type, having only a few side constraints, we believe that
this is the current best algorithm and software implementation available. Solutions
guaranteed to be within 10% of an optimum should be obtained for most problems
having fewer than five side constraints and fewer than 20,000 arcs. However, as
with any other branch-and-bound based procedure, we found difficult problems

which required an extraordinary amount of computer time.

A-18

p—h

6

V1. REFERENCES

. V. Aggarwal, “A Lagrangean-Relaxation Method for the Constrained
Assignment Problem,” Computers and Operations Research vol. 12 pp. 97-106,
198s.

. I. Ali, J. Kennington, and T. Liang, “Assignment with En Route Training of
Navy Personnel,” Naval Research Logistics Quarterly vol. 40 pp. 581-592,
1993.

. M. Ball, U. Derigs, C. Hilbrand, and A. Metz, “Matching Problems with
Generalized Upper Bound Side Constraints,” Networks vol. 20 pp. 703-721,
1990.

. N. Bryson, “Parametric Programming and Lagrangian Relaxation: The Case
of the Network Problem with a Single Side-Constraint,” Computers and Opera-
tions Research vol. 18 pp. 129-140, 1991.

. A. Geoffrion and R. Marsten, “Integer Programming Algorithms: A
Framework and State-Of-The~Art Survey,” Management Science vol. 18 pp.
465-491, 1972.

. A. Gupta and J. Sharma, “Tree Search Method for Optimal Core
Management of Pressurised Water Reactors,” Computers and Operations Re-
search vol. 8 pp. 263-269, 1981.

. J. Kennington and F. Mohammadi, “The Singly Constrained Assignment
Problem: An AP Basis Approach,” Technical Report 93-CSE-25, Depart-
ment of Computer Science and Engineering, Southern Methodist University,

Dallas, TX 75275, 1993.

A-19

8. J. Kennington and F. Mohammadi, “The Singly Constrained Assignment
Problem: A Lagrangean Relaxation Approach,” to appear in Computational
Optimization and Applications.

9. J. Mazzola and A. Neebe, “Resource Constrained Assignment Scheduling,”
Operations Research vol. 34 pp. 560-572, 1986.

10. G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization, John
Wiley and Sons: New York, NY, 1988.

11. R. Parker and R. Rardin, Discrete Optimization, Academic Press Incorporated:
New York, NY, 1988.

12. H. Salkin, Integer Programming, Addison-wesley Publishing Company:

Reading, Massachusetts, 1974.

A-20

Figure 1. Example of branching rule for a 3x4 problem.

A-21

Time (min.) Time (min.)

7
6 10
5 8
4

6
3

4
2
] 2
0

0
0 2 4 6 8 10 12 14 €% 0 2 4 6 B8 10 12 18 6 €D

b. Problem #2 (200x200)

a. Problem #1 (200x200) with 1200 arcs

with 1200 arcs

Time (min.) Time (min.)

2

027 5 5 0 7 4% o0 2 4 6 & 10 iz 14e%h
c. Problem #3 (200x400) d. Problem #4 (200x400)
with 1200 arcs with 1200 arcs

Figure 2. Plots of time versus the stopping tolerance for four problems.

A-~22

Table 1. Empirical results from branch-and-bound algorithm for 400x400 assignment
problems with five side constraints (48,000 columns and 805 rows).

pov | |2 nam | me [| [, e

1.0 189 216 0.71 5,270 5,309 0.74 13
0.9 244 | 1,958 4.74 5,505 5,768 4.78 22
0.8 274 [2,119 3.96 6,999 7,271 3.89 78

! 0.7 952 | 8,288 12.66 | 10,991 11,725 6.68 859
0.6 | 14,142 {124,222 | 166.00 | 20,820 | 22,713 9.09 13,943
0.5] 4,214 | 35,362 45.39 | 47,446 | 50,343 6.11 4,157
0.4 1 2 0.00 problem has no feasible solution
1.0 224 503 1.66 5,370 5,559 3.52 2
0.9 253 1 1,801 4.57 5,830 6,132 5.23 34
0.8 700 { 5,434 9.26 7,815 8,373 7.13 492
0.7 3,114 | 25,786 42.93 12,510 13,649 9.10 2,938

’ 0.6 3,094 | 28,694 40.92 | 23,606 |25,188 6.70 2,871
0.51 3,505 | 29,642 3145 | 50,939 | 54,6590 7.36 3,340
0.4 }25,000" | 79,160 53.37 [148,825 no feasible solution obtained
0.3 1 2 0.0 ~problem has no feasible solution

' terminated due to candidate list size limit.

A-23

18744 96'S 08L'vT S8E'ET 1907 | €L8°S 019 90 0s1

6¢1 oLvy €E€8°L 18p°L 0L01 1ey'e L6t 80 0st 00$x00S

S Sy Sop'S 0LL'S LE'E 69S §9t 0’1 0S1

epl 6v'6 p19°'e? L9512 606 8Ly £0S 90 0zZi1

14 £0'8 vS6°L £9¢€°L 9P 8794 Y43 80 0z1 00vx00%

(A L8°C 80¢€°S 091°S wi 60S 81T 0t 0Z1

8€S°T1 L8'6 790'v¢ 106’1z | 8€'6L |[T8E'SIL| 6L9°CL | 90 06

8L 06°'S 900°8 65S°L L8 7681 4] 44 80 06 00£X00€

(Al S6'1L 1¥9°S €ES’S 80 9¢s v8l 0t 06

6LLS $6'6 9€EpT bIE'CT | 8L°SL [€61°CS | T€8'S | 90 09

LS 298 S8Y°L 0689 144 SEL'S LOL 80 09 00Z%007

14 €0 €S1°S LEL'S €ro 261 291 0’1 09

989°S 00°01 66502 9zL'81 099 66L°001 | 8€6°LL} 9°0 0¢

vov 06t 060°L 85L'9 820 0gL'E Lvy 80 0t 001%001

8LT L99 9s¢e’sS 120°S 90°0 658 S1z 0L 113 .
uaqundu] uonedqg an a1 (- uyu) paajos SIPON % juep/sqor W X u
JO # 9pON % ounl, | sdv # | dvd # Uonduosaq We[qoig

(*S)uIRIISUOD IPIS AL JARY SWIqoId [|V)

‘wyiaodie punog-pue-ysueiq) uisn | 19s wjqoid yum syjnsas eondwy ‘g dqel

A-24

8¢C viL £89°LT BEB'ST | TL6l | pST'9 | 0€9 90 051

123! $8°9 biS's 896'L 69°6 S8e't 1184 80 0S1 005%00¢

8¢t1 [AA v00°S €€6'Y 0S°L 1€L°L 9t¢ 01 oSt

79¢°C 65°6 L6T'8C 128°St L1'6¢ LY6'€T |9LY'T 9°0 0?1

Ll 19°8 909°8 €T6'L 9T'¢S 1L0°E 09¢ 80 oct 00vx00%

81 . 9S 091°¢S z68'Y 8L°C 9Z1'l 0sZ 01 0zl

659°01 £9'8 $50'9¢ $86'€C LL6L 8v6 66 |€18°01 9°0 06

782 80°¢ v68°L 859°L 144 SI'y o6y 80 06 00£X00¢

01 780 08Z°S LET'S 950 06C 8S1 01 06 :M,
pLE'L LTL ¥S6'ST re1've ta'v 80E€'EL |LSP'L 9°0 09

4 v9°6 €8L°8 010°'8 000 8 l 80 09 00Tx002

9 $8°0 826'S £L8°S €10 961 €0t 0t 09

1L8°C LOL 96L'TT €STIT 98’1 168'ST | T€6'C 90 0t

LEET 8L 865°8 vL6'L 20t LSL'TL | v6e’l 80 ot 001x001

14 81'8 £8¢°S SL6'Y v0°0 148% 9L 01 0t

uIquInduj uonenag an a1 A.:_Ev paAjos SOPON 3 uejN/sqof wXxXu
JO # 3pON % swip, | sdv # | dva # uondussaq Wa[qoig

(‘swutesssuod Ipis aal dAey swajqosd |jy)
‘wyuode punoq-pue-youelq ay) Juisn z 19s wojqold ynm synsaa jesrnidwyg g 9jqel
[® ® o o ® @

bLL'T £6°L £90°L1 608°S1L 0y 1sreet 00zt | 90 06
79 e vL9'S L6T'S L8°0 292t 94 80 06 009%00¢
4 19°¢ LE6'E 008°¢ 0e0 L1y Sot 01 06
844 006 61581 06691 120 81E'C 8¥C 90 09
44! 89°¢ vTT's 8€0°S 820 9¢¢°1 144" 80 09 00vX00¢C
14! S6'L 65S°€ 16¥°¢ 90°0 €Ll 144 01 09
pTL'T LE'L 0Eb 91 z0g‘st $8°0 Ltyt'vz | 9zL't {90 0¢
9L oL'L 008°S y8E‘S ¥0°'0 £88 06 80 o€ 002x001
€81 6t°L 0v6'E 899°¢ LO0 S8I°I 62T 01 0t
jusquindug uoneag an a1 A.C_Ev p3A[os SAPON N [ue/sqof wxu
JO # apoN A . awiy, sdVv # avy # uonduaspq wsqoid
('s1urensuod 3pis aAly aAey swiAjqoid [[v)

"wyiod|e punoq-pue-youerq sy 3uisn ¢ 13s wajqosd yum sinsas resrndwyg b 9jqe]

A-26

Jwi] 9ZIS JJepIpuLd 01 NP pIreUIWLII) |
S10'SI €Ll | 1190 | cesei | v868 | ivzosz| ooo'sz| 90| o6
91 LT 15S's cov's | 180 |cLr't | €zz 80| o6 | 009x00g
LE 0S'2 67L'E pPo's | ¥Z0 | 10b o1 |or] o6
el 9.9 coc'sl | 080’8t [oco [ee6t | €81 [90[09 .
LS VL9 SLV'9 0019 | 820 |6Sr'T | 661 | 80| 09 | o00bX00z <
I 98'9 629'v e’y | 000 | [0t| 09
685'6 9b'€ 0s9'vL | o091'vt | vLe [ecv'ee | 1596 | 90| oc
bL 16 06b'S 1€0's | 900 fivzr | Lz1 | g0} oe | oozxoor
s 9¢'¢ Shb's gee'e | 00 |sez Ly 01| o
waquinduj uonenaqg (- urur) paajos SIpPON Y ew/sqor w X u
JO 4 3pON % an 41 suny, | sdav# | ave# Gondiosg WeIaod

(‘siurensuod apis aaly aAey swidjgoid [1v)
‘wipiodje punog-pue-youelq 3y Juisn 195 wiajqoid yum synsas jeoudwg ¢ djqe

Techmical Report 94-CSE-32

Recovery from Numerical Instability

During Basis Reinversion

by
Jeffery L. Kennington

and

Riad A. K. Mohamed

Departinent of Computer Science and Engineering
School of Engineering and Applied Science
Southern Methodist University.

Dallas. Texas 73275

August 1994.

B-1

Abstract

Aol the preassiened pivor acenda aleorithims that extend the Hellerman-
Rarick P3 aleorithin assiie that the input matrix is nonsingular. Due o nn-
merical in=tahilitv, this assuniption may be violated and these aleorithms fail.
We present a modification of the P3aleorithm which includes a])1‘()('(’(1111‘(‘
1o recover Trony this 1vpe of nnerical insiability. The recovery procedure is
intearated into P3in such a wav that all previous work can be mamitained

and it reduces the likeliliood that addinional recovery will he required.

1. Introduction

In linear progratuming svsteins, an portam component is the aleorithng for ol
taining a new factorization for the inverse of the hasis. The first step in the aleorithng
i~ to determine a pernmtation of the rows and columuns of the basis. <o that the spar-
sity property of the basis will be mamtained i the factorization of 1t's inverse. In
the literature. the permutation of the basis is known as a pieof agenda. and there are
several algorithms for obtaining a good pivot agenda.

Y

In 19710 Helleriman and Raviek 5 introduced the preassiened pivor procedure o
for obtaimne such a permutation. In 19720 they added an mitial sort that pernmmres
the matris todower block trianeilar forn and then applies a simplified version o 1
P3aleorthim 1o cach block Thev cafied this aleorithur the partitioned preassiened
pivot procedure (P11 see (6 Dudl 270 presented a simiple aleorithng for permutine
the matrix <o that its diagonal has a mmimnm nnmber of zeros. Erisman er al. 3.
disenssed thie possibility of & structurally zero pivot arising in P11 and sugoested o var-
ant that avoids this problem. called the precantionary partitioned preassiened pives
|n'n('<-(llll‘t' PO Aol e gl l reported that the PO aleorithm does not address
the problems assoctated with smiali pivots. and that P4 performed betrer than P5
when taking into account numerical pivotine. Hatterslev and NMacklev 710 deseribed
a transposed version of P3 which permutes the matrix into an upper triangular forn,
with row spikes extending helow the diagonal. and suggested a technique which alter-
nates between the classic and transposed versions of P3 for reducing the build-up of
nonzeros during factorization. Sankaran [7]. presented some new results on optimal

spike configuration. using an ordering heuristic for doubleton columus.

All of these methods assume that the input matrix has at least one nonzero entry
in every row. In our work with specialized partitioning methods for networks with side

constraints. one maintains the inverse of a working basis, (). correspondine 1o the side

B-3

coustraints. Due to the nature of certam tvpes of side constraint< and finite procision
a () can be developed havine one or more rows cach entry of whicly is smaller thay
our zero tolerance. Henceo the nsual pivot agenda algorithmes fail. For problems iy
this class, we discovered that numerical istabilities frequently oceur. Seahng can
alleviate some of these problems. but can not guarantee that this difficulty will nor
arise. When a row of all zeros (or near zeros) is discovered. one generally replaces some
column of @ with an artificial column and the simplex method is continned. This

idea is referred to as recovery (i.e. the algorithm recovers from numerical instabilitv).

The objective of this investication 1 1o present recovery procednres, using a vari-
ant of the Hellerman-Rarick P3 algorithni. for the case in which the input matvis
has vue or more rows of all zeros. Our variation allows decomposing the hbump mto
smaller blocks. and permits interchanees among the unassigned rows to avoid what
Ensman ot al. vefer to as a structurally zevo pivot. Recovery involves replacing some
column of the input matrix with an appropnate column of the identity matrix. The
difficnlt part is to determine the column to be replaced so that the current work on
the pivot agenda can be retained. An arbitrary selection of the column to be replaced
can lead to failure of the P'3 alguritixms. This failure occurs when it 1s discovered that
there exists a row having all zeros in unassigned columns. or a structurally zero pivor

may arise. Both of these conditions will be demonstrated in the example to follow.

(‘onsider the matrix llustrated in Figure la. which has all zeros in row 10. Re-
placing column 3 by el0 (a column with a nonzero in row 10 and zeros elsewhere)
and applying the P3 algorithm results in all zeros for unassigned columns in row 3.
as illustrated in Figure 1b. This gave us the intuition to confine the column replace-
ment to the lower triangular blocks. However. this does not completely solve the
problem. Consider the matrix illustrated in Figure lc. which also has all zeros in
row 10. Replacing column 35 by el0. then applving the P3 algorithm. will introduce

a structurally zero pivot at location (7.8}, as illustrated in Figure 1d.

B-4

% X3
x % x@ A new zerc
X X X x X - m row
X X X x X
! x x X x X x
i x X X x x x x x
x X X x x X X x
: x X x X X x X x X X
1 X X X X X X X X X X X X X X X X X X X
' X
!
E (a) a matrix as permuted by P3, {b) when replacing column 3 by €10C.
! column 10 is suggested for replacment.
| i
i
x X X X X X X X |
| x X X X @ x X XV structurally |
! x X X X ® x X zero pivot
x X X X ® x X
X X X% %) ®x X! Fill-in
X X X X X x(:) :‘%?//
X X X x| X X
X X X X X X X X x| x X xx X x x{®x
X X X X X X X X x| xxx %X xx X x(®
(®
(c; a block as permuted by P3, (d) when replacing column 5§ by e1¢.

column 1C is suggested for replacment.

Figure 1: Lxamples of P3 failure due 1o incorrect column replacement.
|

2. A Pivot Agenda

Let B he a boolean matrix of order noand let b, denote the ;7 clement of B.
A pivot agenda for B ois a permutation of the rows and columns of B which vields
matrix having some desirable property. For this work the desirable property s jower
triangular form. If this is impossible. then we seek a near lower triaugular form. Let
C and R denote the sequence of n columns and rows in a pivot agenda. That is. the

k" column (row) in the permuted matrix is Co{ Ry).

A pivot agenda can be developed by using three distinet procedures. One proce-
dure searchs for column singletons and places these columns at the end of the pivot

agenda. Another procedure searchs for row singletons and places these rows at the be-

vinnine of the pivor aeendas The third procedvive determines the pernmvation to: 1
remainine rows and cohmins to constract one or more lower trianentar blocks T e
procedures are repeated until all colimins and rows of B are permted to coustruet a
lower triangular block. The pivor agenda algorithin can be described mathematicalls
ax follows:

Procedure : Pivor_Aecnda

Input : B.1.

Output : C. K.

begin

for oo = 1..... mido J — T — 7 ¢ — R —
forvs =100 15 il
fon V= b 1 ddn

b =hen J—T0 b T —I _{): = Inttialization
ena fo
cnd for
T4l << T =0 » Record the zevo rows for recovery »
while ve <7 do
Col_Siyehw. v 0. T.7.C.Ry:
Row Sinelon. o 0. T.7.C.R v
Bump_Procin.u.c.B.I.7.C.R.2):
end while

end.

3. Column Singletons

We reter 160 C and R oas a partial pivot aecnda if there exists an index | < 4 - g
such than ¢, = Ri =0 Lt T =4 b = 0,2 RV < < nh For 2 0o
iZ. = 1. then columu y i~ called a column singleton. Placine a colnmmn singleton and

the corresponding row 1o the right most unassigned position of the pivor agenda e,
C. = R, =0 for the Jargest wy vesults i appending one additional lower triangular
column. I this procednre we repeat the search for column sineletons antil all row
and columns are assiened 1o CrR i or until no colnmn <neletons are fonned, The
search for colummn sineletons can be r«-[)l't'\('!m'r] mathematicalls as follov
Procedure : (‘of_Sinel

Input : v 0. 7.7.

Output : «.7.7.C. R.

begin

whiler 1z

I
¢ — 5 R“—I{-IZ

|
l
?'_

end while

end.

4. Row Singletons

Let C and R be any partial pivot agenda. and let 7 = {; : b, # 0.5 € C.1 <
J < nu}.Fori g R.if |J1 = 1. then row ¢ is called a row singlcton. Placing a row
singleton and the corresponding columu to the left most unassigned position of the

pivot agenda (i.c. C =R, = 0 for the smallest o) results in appending one additional

fower trianeular rovw, Tu this procedime we vepear vhe seard o yov sinelerans
all row and colinmms arc assiened 16 CO Ry o antil no row sineletans are foanned 1
search for row singletons can be represented mathematically as foljow:

Procedure : Row_Siugl!

Input : nov. 0. I.7.

Output : +. 7. 7.C. K.

begin

whilet tz 07 = 1.1 <0< 00X e < uido

end while

end.

Consider the matnix illustrated in Fieure 20 Applvine procedure ColSingl 1o tlis
matrix results i placine columns toand 2 the last two columns of the pernmted
matrix. Applvine procedure Rov _Singl 1o the permuted matrix result~ i placine

rows G 90 T and 12 00 the dirst four rows of the permuted matrix. The pernoned

matrix i~ ustrated nr Fieure 3.

5. The Bump

After applving the Col_Singl and Row_Singl procedures. the remaining rows. {/ :
1 <i<wui @R} and columns. {y : 1 < J < n.j&C}. will either have |7, > |
and |[Z,] > 1. or | [7//Z,] = 0. For this section. we assume that [7]|7,| # 0. These
remaining rows and columns will form a nontriangular section of the permuted matrix.

called the bump.

coL# 1 2 3 4 S 6 7 8 § 10 11 12 13 14 15 16 17 18 19 2¢
ROW 1J! R
11 0 X
2 1 0 x
318 0 X X X X X X X X X X X X X X X X X X
418 O X X X X X X X X X X X X X X X X X X
5 18 0 X X X X X X X X X X X X X X X X X X
6 1 0 x
7 9 0 X X x X x x x X x
8 3 © x X X
9 1 0 x
10 3 0 x X x
11 1 0 %
12 1 0 x
13 3 0 x x x '
14 5 0 x X x x x
! 15 ¢ 0 x x X x x x x X
! i6 2 0 x x
17 s 0 x x X X X X X x x
18 3 0 x x x
19 7 o0 X x x X x x x
26 4 0 x x X x
coL¥ 12 3 ¢ s 7 9 10 12 12 13 14 15 16 17 18 19 20
1TV 1 1 5 7 4 7 5 S5 7 4 71612 5 6 6 6 S 5 8
c ¢ 6 06 U 6 0 6 G G 0 0 0 0 ¢ & &6 0 0 G €

Figure 2: The boolean matrix.

We ceek a pernmtation of the hump rows and columns thar i vields oy a
fewe small blocks thar extend above the diaconal. (i that minmnizes the namber of
nonzera et ries that appear above the diqeonal in these hlockscand vt that confines
these entries 1o a few colnmns that extend above the diaconal. called the spides o
obtain this permutation. scleet a column or a set of colnmns. which will trodiice
the maximun nunber of row singletons when temporarily removed from the inunp.
Let tyiy1 =0 €Z,. 0< |7, <k}, which s called tue k' order tally function of
columu j. For a given k. determine / for every column in the bump. If the maximum
ti is greater than one. select the corresponding column for temporary removal using
the maximum |7, to break ties. If the maximum ¢, equals one. only one row will be
affected by the temporary removal of this column. For this case. merease kb 1o the
minimum |7, greater than & and repeat the process. Let S denote the sequence of

columns which are temporarily removed. (spikes). A column selection method using

coLs 6 911312 3 4 5 7 8 1C 13 14 15 16 17 18 1S 26 1 ¢
ROW (J: R
6 0 6 X
s 0 s x bump
: 11 0 11 x /
| 12 0 12 x
314 6 X X X X X X X X X X X X X X X X X X
414 0 X X X X X X X X X X X X X X X X X X
516 6 X X X X X X X X X X X X X X X X X X
2 1 ¢ x x x X x X x x x!
6 2 o0 X X x
1 3 ¢ x x x
13 03 0 x x x
14 4 o X x x x x
| 15 6 0 x X X x x x x x
16 2 o x x
I 17 5§ 0 X X X X X x x x x
1 18 2 0 x x x
19 4 0 X X x x X x x
20 3 o x x X x
1 0 1 x
2 0 2 x
coL# 6 91112 3 4 & 7 8 10 13 14 15 16 17 18 15 20 1 2
IT1 ¢ ¢ ¢ ¢ 5 7 ¢ 5 5 412 5 6 6 6 5 5 8 O O
¢ 6 91112 0 ¢ 0 & 0 0 0 0 6 0 6 C 6 0 1 2
K= 2 TR ¢ 1 0 0 0 0 2 0 0 1 0 1 ¢ 1
-

Figure 3: The watrix alter appiving the Col Singl and Row _Sinel procednres,

the taily function can he deseribed mathenmatically as follows:
Procedure : Max_Tallv
Input . /... 7.C.S.
Output : /.~
begin
N—{yilsy<n j2C 28t m— 1
while (m =18 A" 2 o) do
for (jeN)do thiyj) = [{i:1€Z,. 0< T <k}
m — max{i;(j):j € \}:
if(1n =1)then
N {1y <n =1}k
Ae—min{{7,i:k<|T7]. 1 <i:<n}:

end if

B-10

end while
~—argmas{ I o~ N oo =

end.

Figure 4: Biock partition of a bump.

I possibles the bumyp s decompaosed imo a small number of blocks counceted hye
lower trianenlar component~. A example of this stracture is illustrated in Fienre |
Within a block. only the spikes are permitted to have a zero on the diagonal. The
bump processing technique uses the Max_Tally procedure for spike selection. It bhegins
by setting & to the minimum {7.!. A column is selected. using the Max_Tally proce-
dure. removed from the bump. and assigued to the spike sequence §. This process is
repeated until at least one row singleton is obtained. If the row singleton is unique.
the corresponding pivot is placed in C,(R,). Otherwise k is set to 1. a colummn. .

is then selected using the Max_Tallv procedure and placed in C.. Then one of the

row singletous that has a nonzero entry in column » is selected. and placed in ® . I

B-11

g = fpvat - bobes the nmber of row sialetons having nonzero enties i covant, -

i~ greater than one. we have the u])pul'l\i]lh} tu pl'af'(' y — b ~1)il\‘t'\ o the prven
agenda. Including all the spikes into the pivot agenda isolates a block. and decom-
poses the bump into simaller blocks. The process is repeated for the identihication of
cach block, If B Lias a row of all zeros. or a columu of all zerosove. 2T T = 0.
then the desired lower trianeular structure 1= not achievable, I thns is discovered.
a recovery procedure, which is deseribed o the next section. will be imvoked. Fhe
bump processing can be described mathematically as follows:

Procedure : Bump_Proc

Input : .. 0.B.7.7. 2.
Output : v. . B. 7. 7.C.R. =Z.

begin
(= (8 —
be—min {7 T =c. 1l <072

i

{7 =0 1</ <uy=0& 2 =orthen Recoverlthon.o. B.I.C.R. 2y

while + 04 > 1> 0,8 ¢ < do

while vk > 1y do “x temporarilyv remove a set of cohunus -

Max_Tallvik . T.C.8. s

- -

bt =1 S = Jo—=J s} =210 I — o

th

b—min{.J T =0l <0<
end while
Fed{i:lTi=1.1<:<n}:
while (F # o0& (> 0) do

/ = record the row singletons * /

if(t |Fi=1)then / * a unique row singleton » /
C.—jed: R, —i1eF:
Jo—= TN} VheI,: I, —o verv+1l:

else

B-12

b1 Marlallych . T.C. 8.~
G— Jece= T T 0 S Compite s .
C —~ R —/2 F~ 1.
T T oAt vhs I I —o o —e 10 F—F i
while tg > 08 ¢ < i do
g —q-1:
ifi ¢ >0 ithen s mclude a spike into the agenda » 7
C.—S8S: R, —ieFiT. =W
FeFllit—r =10 v —0r~1
clseif if > 08 2 = o then
Recover 2in. o B.I.C.R.S. 2
end ot
el wlnle Sy >)
ol i G
F—1{ioTd =112 0
cnd while « F o=
b—min {7 T =l <k
il =0t <<l =0l 2 = then Recover 2.0 B.T.C.R.S. 2
end while

end.

Consider the permuted matrix ilinstrated in Figure 3. In this matrix. the unas-
signed rows aud columns form the bump. Using the Max_Tallv procedure. column
13 was selected for temporary removal from the bump. This removal introduced two
row singletons. rows » and 18, Using the Max_Tallv procedure. column 4 was selected
to be assigned to Cg. and row 3 was selected to be assigned to R,,. This assignment
introduced a new row singleton. row 13. Similarly. rows 20 and 13 were assigned

to R- and Ry, where the corresponding columns and the order of placement were

B-13

&

coL# 6 91112 3 4 5 7 8 1C 14 15 16 17 18 1% 2G 1: 1 2
ROW 1J! R
€ 0 6 X
. 9 0 9 X
: 11 011 X
! 12 0 12 X
' 313 0 X X X X|[X X X X X X X X X X X X X s]|
i €13 0 X X X X{X X X X X X X X X X X X X s
! 513 0 X X X X|X X X X X X X X X X X X X S
, 7 6 0 X x x x X X X X S
! 8 1 0 b @ 1 s
' 10 3 0 X b3 X 3
i 13 2 o ® X s
i 14 3 0 X X x X s
! 15 5 0 X x x x X x X s
; 16 2 o x b
17 4 0 X X X X|x X x x s
18 1 0 x x [
19 3 0 X X X x X X _2s
20 2 0 x L X s
10 1 X
2 0 2 X
coL# 6 91112 3 4 5 7 8 1¢ 14 15 16 17 18 19 20 12 1 2
11! 0 ¢ 0 ¢ 5 7 4 5 5 ¢4 5 6 6 €6 5 S 8 0 ¢ ¢
c € 9 11 12 ¢ ¢ ¢ ¢t ¢ ¢ 6 ¢ ¢ 6 ¢ 0 ¢ i 2
K= 1 TK ¢ 1 ¢C 6 0 0 6 ¢ G 0 1 0 ¢
K= 2 TK 2
After including cclumn ¢4 and row € 4into the agenda.
: K= 1 TK [6 & 0 0 0 0 0 0 1 0 1
! K= 2 TF 1 4
; After including ccelums i) a&an: row . Lntc Lhe agernia
Kz 1 TK [6 6 ¢ 0 1 0 2 0 1 ©

Figure 5: Processing the bump after removing column 13 as a ~pike.

determined using the tallv funciion. These assignments are ilhistrated in Figwe 5.
Since Hil6r = 20 e the number of row singletons that have nonzero entries gy
colunmin 16 is 2y, one spike can be placed into the pivot agenda. Sinee column 13
was the only spike. including it into the pivot agenda decomposed the bump o twe
small blocks. a~ illustrated 1 Figure 6. Since minimum |7,) = 1 for the remaining
rows. the Row_Singl procedure is invoked to assign these row singletons to the pivot
agenda. The resulting matrix is shown in Figure 7. Since minimum {7,{ is now greater
than one. the Bump_Proc procedure was invoked again. and the resulting matrix is
illustrated in Figure 8. By processing the bump. the number of nonzero entries above
the diagonal was reduced to onlyv fifteen entries which are confined to four spikes in

two blocks.

B-14

CoL# 6 9 11 12 4 2¢ 16 2 3 S 7 g 10 14 1% 17 18 19 1

z
ROW {J° R
6 ¢ 6 X
9 ¢ 9 X
11 ¢ 11 X
12 ¢ 12 X
8 ¢ 8 x X x T TTTTTTTTTETT” '
26 0 20 X X X X '
13 0 13 Cox X X% :
: 16 0 16 x X)
; 310 0 X X X X X X X X X X X X X X X X X X,
| 410 0 X X X X X X X X X X X X X X X X X x!
! £10 0 X X X X X X X X X X X X X X X X x x!
| 7 4 0 % x X X X x x x x| ;
| 10 2 © X X X ' !
' 14 1 0 X X x x x) .
! 15 5 0 X x X X X x x x !

; 17 4 0 X X X X X x x x X : .
' 18 1 0 X be x . :
19 3 6 X X X X X X___x,

1 ¢ 1 x
2 6 2 X
coL# € 911 1T 4 2¢ 16 13 2 £ 7 @ 10 14 15 17 18 1% 1 2
iZL 6 9 6 ¢ € ¢ 6 ¢ 5 4 S S5 4 5 €6 6 5 S 0 ¢
< € 9111z 42061613 ¢ ¢ 0 G G 0 0 O 6 0 1 2

Figure 6: Tl mainyx after decomposine a block.
g 1 .

6. Row Recovery

The above aleorittuns are desiened 1o help produce a spavse factorization of the
imverse of o linear proaramming basis. Due to finite precision ol machines, ronnd-
off errors oecur which mayv fead 16 a set of basic columns havine a row of zeros.
When this occurs. the classic Hellerman-Rarick P3 algorithm fails. In this seetion,
we present the recovery algorithis which eusure that the preseribed lower triangulal
form 1s attamable. while introducing a replacement column haviug a single nonzero

entry. The ingenuity is in the selection of the basic column to be replaced.

Let Z ={i:1<i<u.Jd =0} Let e, denote the i columu of an identity

matrix. Based on the structure of the original matrix. recovery can he done at three

different stages of the algorithm.

The first case for recovery occurs when there exists at least one zerv row. and all

the remaining rows have heen assigned. Since onlyv 1~ 27 pivors hiave heen assiened,

B~-15

coL# 6 9 11 12 4 26 16 13 14 18 7 3 £ 8 1¢ 15 17 15 1 2
ROW 1J! R
6 0 6 X
9 0 9 X
i1 0 11 x
12 0 12 X e e e e e e e .
8 0 € x |x X ,
: 20 © 20 x [x x b)
13 0 13 X x ’ﬁ :
16 0 16 X X !
14 0 14 x X x X X .
! i 18 0 18 x) X x !
: 10 0 10 X x x '
| 37 6 X X X X'X X X X X X X X X X X X x x'
; ¢ 7 0 X X X X'X X X X X XXX X XXX X X
| 5 7 0 X X X XX X X X X X XX X X X X X X
. 7 3 0 X% X, X X X x x X x
: 15 4 o X X ' x x X x x x ' :
i 17 4 0 X X X X x x X x x ! i
19 3 0 X X X i X x x x
10 1 fTT Tttt TTTT T s smm s oo x
, 2 0 2 X
' coLt 6 9 11 12 4 206 16 13 14 18 7 3 5 8 10 15 17 18 1 2
, 1 0 0 06 0 0 ¢ 0 6 0 0 0 5 4 5 & 6 6 5 O 0
‘ c 6 911 12 4 20 16 13 1418 7 0 0 6 0 0 G 0 1 2

Figure 7: The marrix after applyine the KowoSingl procedure for the second time.

\7 ¢ = 0 {or the remaimng columns. and it i< clear that these columns should he
replaced. Recovery from this case can he mathematically deseribed as follows:
Procedure : [trcover |

Input : k.. B.7. Z.

Output : v.C. R. Z.

begin

R.—icZ: Z—Z2{i} u—u—-1. k—0
replace column j of B by e,:
end.

This case 1s illustrated in Figure 9.

The secoud case for recovery occurs when there exists a zero row in the middle of
processing the bump. The matrices permuted by the P3 algorithm have the interesting

property of spikes appearing as properly nested sets. for more details see Arioli of

coL# € 5 11 12 4 20 16 13 1¢ 18 7 15 1¢ 8 5 3 1§ 17 1 2
ROW 1J! R
6 ¢ 6 X
3 0 9 x
‘ 11 0 11 x
: 2 012 S
s 0 8 x ix X,
: 20 0 20 X |Xx X x,
13 0 13 X x x
; 16 0 16 X x
: 14 0 1e X X X X x
} 16 0 18 x ' x x ‘ ’
! 10 0 10 ‘X x X I |
| 19 019 X X x! x x X x
[7 0 7 x x, x x x x x x x| l
! 17 017 X X X X ¢ x x x x X i
' 3 0 3 X X X XI1X X X X X X X|x x x x x Xx xl i
i 4 0 4 X X X X IX X X X X X X|X X X X X X x| i
5 0 5 X X X X :x X X X X X x|x x x x X x x'
1= 0 1S X x e ____%__ % __x X X X '
1 ¢ 1 x
2 0 2 x
coLs 6 9 11 12 4 20 1¢ 13 14 18 7 15 10 8 5 3 19 17 1 2
i1+ © ¢ © o 0 0 o 0 0 0O 0 0 0 0O 0 0 0 0 ° O
c € 9 11 12 4 2¢ 16 13 14 18 7 15 10 8 5 3 19 17 1 2

Figure 8: The mairix after processing the last bumnp.

al 10X spike has been discovered for this recovery case. which corresponds 1o the
onter most nested e, and that will never he placed into the pivor agenda. This spike
i~ alwavs replaced by the appropriate column of the identity matrix. Recovery from
the second case can be mathematicallv deseribed as follows:
Procedure : Recover_?
Input : .v.B.7.5.Z.
Output : «.B.C.R.S.Z.
begin

Co—J—8: R, —1€2:

S—8\Si: Z—~2\{t}: v—u-1L

replace column j of B by e,:
end

This case ix illustrated in Figure 10.

B-17

coLk 1 2 3 4 5 6 7 B 9 1C 11 1z 13 1§ 15 1€ 17 18 15 2
ROW)J! R
10 1 X X X%
‘ 2 0 2 X X X
: 3 0 3 X X X
! 4 0 4
! 5 0 S
6 0 6 X
: 7Tt 7 x
‘ e 0 8 X x
9 0 9 X X x x
10 010 X X x x
i 11 0 11 x x
! 12 612 X X X X X X X X X X X X
' 13 0 13 X
| 14 0 14 x i
15 0 15 x {
i 16 016 X X X X X X X X X X X X x |
! 17 017 X X X X X X X X X X X X X
18 018 X X X X X X X X X X X X x
19 619 X X X X X X X X X X X X X
20 020 X X X X X X X X X X X X x
coL# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1§ 20
111 0 0 6 0 © 6 0 0 0 0 0 0 0 6 0 0 0 O ¢ o
c 1 2 3 0 0 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20

Figure 9: \u example of recovery casc .

The third case tor recovery weenrs when there exists a zero row ar the end of
processine the binp. For this caseo there ave (2 =08 unassigned cohnns and a
spike has heen discovered that will never be placed into the pivot agenda. Similar 1o
the second case, this spike i< alwavs replaced v the appropriate cohunm of the identiny
matrix using procedure Recover 2. Eventually, we will reach & sttnation singlar 1o
the tirst case. where procedure RecoverZ] will be invoked. This case i~ illustrated in

Figure 11.

7. Summary and Conclusions

We believe that the ideas presented in this manuscript close a gap in t'ie literature
concerning the preassigned pivot agenda algorithms. All of these algorithms assume
an input matrix which is nonsingular. that may not be the case every time these

procedures are called. This manuseript presents a variant of P3 which results i a

B-13

{ coL# 7 1311 16 17 4 20 19 38 3 5106 15 6 1 2 € 9 12 14
ROW 13 R
7 0 7 X%
10 010 X X
11 011 X
16 0 16 x
17 0 17 x
6 0 6 X X x
19 019 X x X X '
i3 o0 13 X x x s
18 0 18 X x x X X s
3 4 0 X X X X X X X X X X X X S
4 4 0 X X X X X X X X X X X X X S
5 3 0 X X X X X X X Xx X X X s
15 1 o x X s
10 1 x
2 0 2 s x
8 0 8 x
s 0 9 x
12 0 12 x
: 14 0 14 x
i 20 0 o |
coL# 713 11 16 17 4 2019 18 2 51015 6 1 2 8 9 12 14 |
fiTfy © 0 6 6 0 0 0 © o 2 3 3 4 06 O O O 0 O O !
c 7131116 17 6 201518 0 0 0 0 0 1 2 & S 12 14 |

Figure 10: An exawmple of recovery case 2.

reliable and efficient method to recover fromn all types of numerical instabilities. These

ideas can be easily adapted for the aleorithms of [1]. [3]. [, [65. and [7].

References

(1] M. Arioli. 1. S§. Duff. N. 1. Gould. and 1. K. Reid. "Use of the P4 and P53
Algorithms for In-Core Factorization of Sparse Matrices.” SIAM Journal on

Seientific and Statistical Computing. Vol. 11. No. 5. pp. 913-927. 1990.

[2] 1.S. Duff. “On Algorithms for Obtaining a Maximum Transversal.” ACM Trans-
actions on Mathematical Software, Vol. 7. No. 3. pp. 315-330. 1981.

(3] A. M. Erisman. R. G. Grimes, J. G. Lewis. and W. G. Poole Jr. “A Structurally

Stable Modification of Hellerman-Rarick’s P4 Algorithm for Reordering Unsy-

B-19

coL# 1 2 3 & 5 € 7 8 o it 11 1z 13 14 15 16 17 18 1% 20
ROV 1Ji R
1 ¢ 1 X X X s
2 ¢ 2 X x x s
30 3 X x X s
4 0 O
5 0 0
€ 0 0
. 7 0 7 s x
| 8 0 8 s X X
| 9 0 9 X X s X X
! 10 © 10 X X X s X X
; 11 011 X s X X
‘ 12 012 X X X X X S§ X X X X X X
{ 13 0 13 X X
: 14 0 14 X x
15 0 15 X X
16 016 X X X X X S X X X X X X X x
17 617 X X X X X 5 X X X X X X X x
18 €18 X X X X X 5 X X X X X X X X
19 619 X X X X X S X X X X X X X X
20 020 X X X X X S X X X X X X X X
coLk 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
120 0 0 0 ©6 6 0 % 0 0 0 0 0 0 0 O O O 6 O
IS 12 3 0 0 G 7 8 § 1¢ 11 12 13 14 15 16 17 18 19 20

Figure 11: \u example of recovery case 3,

metrie Sparse Matrices” SIAN Journal Nume vical Analysis. Vol 2. pp. 369-385.

TONT,

S B Hatterslevs and 1. Macklev, “Construction of LU Factors of the Basis to Re-
duce Build-Up During Simplex Irerations.” Journal of the Opevational Rescarel

Soricty. Vol 43, No. D, pp. S07-515 1992,

S B Hellermans. and DL Rarick “Remversion with the Preassiened Pivor Proce-

dure.” Mathematical Programmang. Vol 1. pp. 193-216. 1971,

[6] E. Hellermau. and D. Rarick. "The Partitioned Preassigned Pivot Procedure
(P4).” in D. J. Rose and R. A. Willoughby. Eds. Sparse Matrices and theor
Application. pp. 67-76. Plenum Press. New York. 1972.

[7] J. K. Sankaran. “Some New Results Regarding Spikes and A Heuristic for Spike

Construction.” Mathematical Programming. Vol. 61. pp.171-195. 1993,

B-20

Distribution List

Dr. Neal D. Glassman
Program Manager
AFOSR/NM

110 Duncan Avenue, Suite 100
Bolling AFB, DC 20332-0001

(1 copy)

Marilyn J. McKee, Chief

Contract and Grant Administration Division
AFOSR/PKA

110 Duncan Avenue, Suite B115

Bolling AFB, DC 20332-0001

(6 copies)

Carol Voltner, Assistant Director
Office of Scientific Research
SMU

Dallas, TX 75275

(1 copy)

